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In an effort to extend the successful soliton model of the e relaxation of crystalline polyethylene to other 
crystalline polymers, solitons producing net rotation and/or translation of crystalline polymer stems are 
studied for four polymers: polyethylene, isotactic and syndiotactic polypropylene, and isotactic polystyrene. 
We are able successfully to predict the activation energy of the e relaxation in both polyethylene and isotactic 
polypropylene, and to explain the absence of the e relaxation in both syndiotactic polypropylene and 
isotactic polystyrene. Criteria controlling the absence or presence of the e relaxation in any particular 
polymer crystal are: first, the energy barrier opposing motion of each individual repeat unit of the stem; 
secondly, the elongational stiffness of the polymer stem; and thirdly, the number of bonds per repeat unit. The 
stems in thin polyethylene or paraffin crystals are predicted to support both rigid-rod translations and a 
combined rotation-translation soliton. 

(Keywords: ~ relaxation; solitons; crystal motion) 

I N T R O D U C T I O N  

The potential energy exerted by the surrounding 
crystalline stems upon a given stem in a polymer crystal 
reflects, of course, the symmetry of the stem. For  example, 
a complete rotation of the stem through 360 ° brings it 
back into crystallographic register, as does a translation 
along the fibre axis through the unit-cell dimension. In 
addition, because the polymer stem is helical, other 
symmetry-preserving transformations, namely screwing 
the helix in or out of the crystal, can also be considered. 
Examples of these are a combined 180 ° rotation and c/2 
translation in polyethylene, and a combined 120 ° rotation 
and c/3 translation in isotactic polypropylene, where c in 
either case represents the unit-cell dimension along the 
fibre axis. In either case, the polymer stem finds itself 
moved forwards or back by one chemical repeat unit. One 
could consider motions within the crystal in which a stem 
jumps from a particular minimum energy position in the 
lattice to some other symmetry-equivalent position 
through a combined translat ion-rotat ion motion as a 
rigid rod. Such rigid-rod motions probably occur in thin 
crystals (see below), but since they require an activation 
barrier proport ional  to the crystal thickness, a motion in 
which the polymer stem moves flexibly between 
symmetry-equivalent positions is preferred in thick 
crystals. In thick crystals, motions having activation 
barriers independent of crystal thickness can occur if one 
end of the stem makes the transition, followed by the 
remaining portions of the stem at later times as a distorted 
region travels along the stem. 

Such a combined rotat ion-translat ion motion 
travelling along the stem has been considered as the 
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mechanism of the e relaxation of polyethylene for quite 
some time 1 -v. In 1978, the energy and structure of the 
distorted region were calculated, and they were found to 
be in good agreement with the activation energy and 
relaxation frequency as a function of crystal thickness 
over a wide range of thicknesses a. In 19809-11 it was 
pointed out that the motion is a particular example of a 
class of non-linear waves, a so-called soliton or solitary 
wave 12. Finally, Skinner and Park 1 a showed in 1984 that 
the soliton model could predict dielectric relaxation 
curves in polyethylene over a wide range of frequencies 
and temperatures, providing, so far as we know, the only 
successful molecular model of a polymer relaxation. For 
more details, the reader is referred to the reviews by 
Boyd14,15. 

The distorted region in polyethylene combines a twist 
about  the stem axis through 180 ° and an accumulated 
translational distortion parallel to the chain axis of half 
the unit-cell dimension. The twist is predicted 8 to occupy 
about 12 bonds, with each bond distorted an average of 
about  15 ° away from the trans rotational state, while the 
translational distortion extends over roughly 100 bonds 
and in thick crystals leads to a compression or expansion 
of the stem by o n e  C H  2 group. The motion leads to 
dielectric relaxation by being created thermally at one 
face and travelling through to the other, leaving the stem 
translated along its axis by o n e  C H  2 group and rotated 
through 180 ° relative to its original position. 

We show below that any polymer crystallizing in a heli- 
cal structure has sufficient symmetry to support soliton 
solutions to its equation of motion, requiring only a set of 
symmetry-equivalent minimum energy positions for each 
stem. However, the ct relaxation has been observed in only 
a handful of polymers 14'15. If the soliton mechanism is 
valid for all polymers exhibiting an e relaxation, it should 
explain the presence or absence of an ct relaxation in any 
particular case. To understand better the factors 
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controlling the existence of the ~ relaxation, we have 
computed the structures and energies of solitons in four 
different polymer crystals, namely, polyethylene (PE) and 
isotactic polypropylene (iPP), both exhibiting an ot 
relaxation 14'15, and isotactic polystyrene (iPS) and 
syndiotactic polypropylene (sPP) 16, for which no 
relaxation has been observed. These calculations give a 
better understanding of the factors leading to the o~ 
relaxation. 

The approach employed here to calculate soliton 
structures and energies is similar to the Mansfield-Boyd 
calculation for polyethylene s , but, owing to limitations in 
computational resources, is more crude. For this reason, 
the calculation of the polyethylene soliton given below is 
not an improvement on the Mansfield-Boyd calculation. 
It was done to permit a comparison between the crude 
approach employed here and the more precise 
calculation. A number of interesting results have been 
obtained in spite of the crudity of our calculation. 

The soliton equation of motion employed in this paper 
has been derived elsewhere 9, and is discussed in the 
second section. In the third section, we describe the 
computational approach employed in this paper. In the 
fourth section we derive expressions for two quantities 
required by the model, namely, spring constants 
characterizing the translational and rotational stiffness of 
a particular polymer stem. In the fifth section we present 
the results of these calculations for each of the four 
polymers named above. In the sixth section we 
summarize our results, discussing the properties that 
control the presence of the ot relaxation. 

SOLITON EQUATION OF MOTION 

Elsewhere 9 we have derived the following equations to 
describe the motion of a crystalline stem: 

d2x 1 d2X 1 d U  

dZ 2 C2 dt 2 k l l  2 dx 
(la) 

d20 1 d20 1 dU 
(lb) 

d2 2 C22 dt 2 k212 dO 

These represent the equations of motion of a continuum 
model of a single polymer stem in which it is assumed that 
the position of each repeat unit in the stem is determined 
by two variables, a displacement along the stem axis and a 
rotation about the axis. In these equations, l is the 
distance between repeat units along the stem in a perfect 
crystal, t is the time, z is the position that the repeat unit 
would assume in the perfect crystal, x(z , t )  gives the 
displacement of the repeat unit with perfect-crystal 
position z away from its perfect-crystal position, and 
0(z,t) is the rotation of the repeat unit away from its 
perfect-crystal position. U(x,O) is the potential felt by a 
given repeat unit due to neighbouring stems. In deriving 
equations (1) it is assumed that the relative displacements 
of adjacent repeat units are sufficiently small that the 
potential energy contributed from within the stem is 
entirely harmonic in the relative displacements of 
adjacent repeat units. The spring constants kl and k2 
determine these harmonic functions for the translational 
and rotational displacements, respectively. The quantities 
c i = kil2/mi, for m I the mass and m 2 the moment of inertia, 
respectively, of a repeat unit, are the velocities of low- 

amplitude longitudinal and transverse sound waves, 
respectively. 

The coordinate transformation 

¢ = z - vt (2) 

transforms from the laboratory reference frame to a 
reference frame moving with velocity v parallel to the 
stem. Equations (1) are transformed to: 

d2x ~2 dU 
d~2-kl /2  dX (3a) 

d20 y2 dU 
(3b) 

d~ 2 -  k212 dO 

where 

y~=(1-v2/c~) -1 (4) 

We have been unable to write down a solution that is 
valid for arbitrary U(x,O). However, a qualitative 
understanding of a particular class of solutions is not 
difficult to obtain. Consider solutions such that x and 0 at 
~ + ~ take on values for which U is at a minimum, 
while at ~ ~ - o0, x and 0 lie at a different, but symmetry- 
equivalent, minimum of U. Since the equations of motion 
lose all explicit time dependence in the moving reference 
frame, we conclude that the solution maintains a constant 
profile in time. The velocity is arbitrary, constrained only 
by the requirement that v 2 be less than the smaller ofc 2 or 
c22. Note that equations (3) have the same form, up to a 
multiplicative factor, as equations (1) if we drop the time 
derivatives from the latter. This implies that the dynamic 
problem is solved automatically by solving a static force 
(and torque) balance problem with modified values of the 
spring constants: 

k i ~ k i / 7  2 (5) 

We have no real difficulty imagining the form of the 
solution to the static force balance problem: the two ends 
of the stem lie in different but symmetry-equivalent 
minimum energy positions separated by a strained region 
whose structure is dictated by the details of the force 
balance. We conclude that the equations of motion 
predict the existence of a wave pulse, moving down the 
stem with constant shape, which transfers chain segments 
between two symmetry-equivalent minimum energy 
positions as it passes. 

Any localized wave pulse travelling with constant 
profile is called a solitary wave 12. We have shown above 
that solutions to equations (1) exist that fit this definition. 
The term 'soliton' denotes solitary waves that preserve 
their shape and velocity in collisions 12. Similar wave 
equations are known to have this property (e.g. the sine- 
Gordon and ~b 4 solitons 12) and solutions to equations (1) 
probably do, too. Nevertheless, we have not investigated 
any multiple-soliton solutions to equations (1), so that 
our use of the term 'soliton' is not rigorously justified. 
Given the energy required to create a single soliton in 
these systems, two-soliton interactions should be too 
infrequent to be of any physical significance, so that the 
question is not an important one. 
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These solitons carry conserved energy, conserved 
linear momentum and conserved angular momentum ~ 2. 
The total kinetic and potential energies, respectively, 
carried by the solitons are given by the integrals: 

+co  

if r=~- 
- - o0  

dz [ml(~_~) z f~0"~17 

+m.W J (6a) 

(6b) 

V= 

+o0 
[ k , t ( o x ' ¢  . k.t: oV v f dZL2-\~ ] +T~Yz) +5-] 

--o0 

(7a) 

+~ 
k l l  ~?x 2 

f d ~ [ ~ - ( ~ )  - + - 2 t ~ )  k211/c30\2UTA-~J (7b) 

The total linear momentum carried by the soliton is: 

+cO +o0 
ml ; ~x --rely f ~x --ml~) i 

d z ~ - =  d( 7 - a x  (8) 

- - oc  - - oo  

behaviour predicted by the equation of motion that 
neglects them. Any system in which they are strong 
enough to suppress this motion most probably does not 
exhibit an a relaxation. 

The potential energy carried by the soliton is constant 
only in the continuum limit. Since the continuum model is 
only an idealization, we expect the potential energy to 
vary periodically as the soliton advances from one unit 
cell to the next. This variation in potential energy should 
contribute to soliton scattering, becoming more 
important as the continuum approximation becomes less 
valid. If these potential energy ripples ever become 
comparable to kBT, the free-streaming motion of the 
soliton is probably impossible. Any such polymers would 
not have an a relaxation. In this paper, we estimate the 
height of these ripples in each of the polymers. 

COMPUTATIONAL DETAILS 

We have employed a finite-differences technique to 
calculate solutions to equations (3). If the nodes in the 
calculation are spaced at intervals of h apart, then the 
finite-difference form of equations (3) is: 

=7~ Cx(xj,Oj) (10a) k'l (xj  + 1 - 2x j  + x~_ 1) 2 , 

kz(Oj+ 1 _20j+Oj_1)  2 , ' = ~ 2 Uo(xj,Oj) (10b) 

where 

and the total angular momentum is" k'~ = (l/h)ki U'(x,O) = (h/I)U(x,O) (11) 

+~ +~ f,0 /d'0 d z - -  = - m2v AO P2 =~-~ --m2v 

- - o o  - - o o  

(9) 

where A x = x ( + o c ) - x ( - o c )  and A0=0(+  ~ ) - 0 ( -  ~ )  
are the total amounts by which the two stems are 
translated or rotated relative to one another. 

Equations (1) neglect a number of dissipative 
mechanisms that affect the motion of the soliton, 
including interactions with lattice vibrations and 
interactions with or collapse into less mobile crystalline 
defects such as the Reneker defect 174s in polyethylene, 
etc. It has proved necessary to include such dissipative 
effects, as least phenomenologically, in the soliton model 
to achieve complete agreement with experiment. For 
example, Mansfield and Boyd s found it necessary to 
apply a soliton scattering correction in thick crystals to fit 
the experimental activation energy vs. crystal thickness 
curve, and Skinner and Park 13 obtained good fits to the 
dielectric dispersion curves only by including a thermally 
activated dissipative mechanism, with an activation 
energy provocatively close to the estimated Reneker 
defect energy, suggesting that soliton scattering or 
annihilation by Reneker defects is an important process. 
It follows that the view afforded by equations (1) of a 
robust soliton travelling through the crystal with no 
change in shape, velocity, energy, etc., is not completely 
correct. On the other hand, the scattering corrections are 
not large and the free-streaming mode of motion 
predicted by equations (1) is indicated by the theoretical 
analysis of the relevant experiments. In other words, we 
do not believe that these dissipative effects are strong 
enough to destroy completely the free-streaming 

and the subscripts x or 0 denote differentiation with 
respect to x or 0, respectively. Table I gives the values of l, 
h and the spring constants employed in this calculation. 
We chose values of h equal to the average interatomic 
distance along the backbone, so that l/h is equal to the 
number of backbone atoms per repeat unit. Equations 
(10) were solved by a standard Newton-Raphson 
technique. The total potential energy was then computed 
as:  

V = ½ ~ [k] (x j -  xj_,)2 + ki(0~- 0j_, )2 + 2 U'(xj ,  Oj)] (12) 
J 

The present model is completely specified by assigning 
values for k~, k2 and the function U(x,O). In the next 
section we explain how we estimated kl and k2. Estimates 
for U and its derivatives were obtained in the following 
way. One crystalline stem surrounded by its near 
neighbours was constructed according to crystal 
structure parameters found in the literature.* This stem 
was permitted to move about within the environment of 
the neighbouring stems, which were held rigid. Figure  1 
shows the moving and stationary stems used in this 
calculation for each of the four polymers. We considered 
all possible pairings of atoms between a single repeat unit 
of the moving chain and all atoms in the neighbouring 
stems out to a distance of 15 A. The contribution to U 
from each atomic pair was taken as A e - 8 "  _ C/r 6 for r the 
interatomic distance and with different A, B and C 
parameters for carbon-carbon, carbon-hydrogen and 

* The polyethylene crystal structure was taken to be the same as in ref. 8. 
The crystal structures of the other three polymers were taken from ref. 
19. 
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Table 1 Values of some parameters" used in this calculation 

kl k2 k~ 
Polymer c (/~) l (A) h (A) (kcal mol - 1 ) (kcal mol - 1/~- 2) (kcal mol - 1) 

k~ 
(kcal moi- 1 A-  2) 

PE 2.548 1.274 1.274 28.4 361.2 28 361 
iPP 6.35 2.12 1.06 17.0 52.2 34 104 
sPP 7.07 3.54 0.88 11.4 8.3 46 33 
iPS 6.65 2.22 1.11 17.0 52.2 34 104 

a c is the unit-cell dimension along the stem axis; I is the length per repeat unit along the stem axis; h is the node interval in the finite-difference solution of 
the equation of motion, set equal to length per backbone bond along the helix axis; kl and k'l are twisting spring constants for a repeat unit and a 
backbone bond, respectively; and k2 and k~ are stretching spring constants for a repeat unit and a backbone bond, respectively 

_f- 
+ 

a 

12 

b 

d 

Figure 1 Schematic diagram of structures used to calculate the 
interstem potential energy function U(x,O): (a) polyethylene; (b) 
isotactic polypropylene; (c) syndiotactic polypropylene; (d) isotactic 
polystyrene. The central stem was rotated and translated in the crystal 
field of the other stems, which were held rigid. Contributions from the 
stems shown only were included 

hydrogen-hydrogen  pairs. The parameters  A, B and  C 
used were those given by Shieh et al. 2° and  U was 
calculated in this way at a set of grid points  (spaced every 
10 ° in 0 and  at intervals of c/20 in x) for a complete 
ro ta t ion  through 360 ° and  a complete t rans la t ion 
through c, where c represents the unit-cell d imension.  A 
Four ie r  series, given in Table 2, was then developed for 
polyethylene that  is accurate at a lmost  all values of x and  
0 to within abou t  0.1 kcal mo1-1.  Satisfactory Four ie r  
series could not  be obta ined for any of the other  polymers,  
and  so a spline in terpola t ion  procedure described in ref. 
21 was employed. Both the Four ie r  series for polyethylene 
and  the spline in terpola t ion for the other polymers have 
con t inuous  first and  second derivatives, which is of 
p a r a m o u n t  impor tance  for the convergence of the 
N e w t o n - R a p h s o n  i teration.  C o n t o u r  plots of the 
funct ions U'(x,O)= (h/l)U(x,O) for the four polymers  are 
shown in Figures 2-5. McCul lough  22 has also calculated 
such funct ions for polyethylene. 

Table 3 lists the m i n i m a  in either the Four ie r  series 
approx imat ion  or the spline in terpola t ion  approx imat ion  
of each U' function.  Table 3 indicates that the spline 
in terpola t ion disrupts  the exact symmetry of the U' 

Table 2 Fourier series approximation ° of U' for polyethylene 

Coefficient 0 dependence x dependence 

0.585698 1 1 
-0.044695 C2 1 
-0.350311 C4 1 

0.041593 $2 1 
-0.152897 $4 1 

- 0.264431 C 1 C2 
-0.007697 C3 C2 

0.072608 C5 C2 
0.201464 S 1 C2 
0.131279 $3 C2 

-0.058807 $5 C2 
0.005141 1 C4 
0.000544 C1 $2 
0.000030 S1 S2 

-0.000244 1 $4 

a Cn and Sn in the 0-dependence column represent cos(n0) and sin(n0), 
respectively. Cn and Sn in the x-dependence column represent 
cos(nnx/c) and sin(nnx/c), respectively, for c = 2.548 A 

2.548 

o~ 

i 
I I 

I 

I I I I I I 
180 
0 (deg) 

1 

I I I I I I  
360 

Figure 2 Contour plot of the function U'(x,O) for polyethylene. 
Contours are drawn at intervals of 0.1 kcal mol-1 (see also Figure 7) 

funct ion since min ima  expected to have equal energies 
differ slightly. The lack of exact symmetry is also apparen t  
in some of the con tou r  plots in Figures 3-5. This lack of 
complete symmetry is no t  expected to be impor tan t  given 
the level of accuracy of these calculations.  

The spline in terpola t ion  has the defect of having 
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6.35 

o~ 

Sofiton model  of  

0 

0 180 360 

e (deg)  

Figure 3 Contour plot of  the function U'(x,O) for isotactic 
polypropylene. Contours  are drawn at intervals of 1 kcal mo1-1,  and 
contours above 10 kcal mol-1 have been omitted for clarity. Closed 
circles give the positions of the minima of U'(x,O). Open circles give the 
computed soliton structure 

90 270 450 

O (deg) 

Figure 4 Contour  plot of the function U'(x,O) for syndiotactic 
polypropylene. Contours  are drawn at intervals of 1 kcal mol -1 ,  and 
contours above 10 kcal mol-1  have been omitted for clarity. Closed 
circles give the positions of the minima of U'(x,O). Open circles give the 
computed soliton structure 

discontinuous derivatives at the boundary of the plot. 
The function itself is continuous upon going from one side 
of the plot to the other, but not its derivatives. Therefore, 
convergence of the Newton-Raphson iteration procedure 
is difficult, if not impossible, near the boundaries. These 
problems are avoided by a simple shift of the boundaries 
whenever the soliton finds itself close to the boundary. 
For  this reason, the syndiotactic polypropylene plot has 0 
varying from ~z/4 to 5n/4, and x from -1.7675 to 
5.3025 A. Of course, the Fourier series approximation of 
polyethylene has no continuity problems and 
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convergence is possible even when the soliton crosses the 
boundary. 

For  a number of reasons (to be discussed below), it was 
necessary to apply constraints to certain of the xj or 0 r 
variables in some calculations. Constraints of the general 
form xj = constant or 0 r = constant were applied through 
the use of Lagrange multipliers. 

One useful property of equations (10) is that coupling 
only extends to nearest neighbours. In other words, xj is 
coupled only to xj_+ 1, to 0j and to a Lagrange multiplier (if 
defined); while 0 r couples only to Oj+_l, to x j  and possibly 
to a Lagrange multiplier. It follows that, by a proper 
ordering of the vector of independent variables (namely, 
x 1, 01 , x 2, 02 . . . . .  x j ,  Oj . . . . .  with interdigitation of any 
defined Lagrange multipliers), the Newton-Raphson 
calculation requires a Gauss Jordan elimination of a 
banded matrix, which can be performed in relatively 
modest times and with relatively modest memory 
requirements. Both computation time and required 
memory are proportional to N, not N 2, for N the number 
of degrees of freedom. We were able to obtain well 
converged solutions rapidly even with as many as 600 
degrees of freedom. 

6.65¢ I I I I I I I  

I I I I I  

I I I I I  

I ] I I I I 
180 

0 (deg)  

360 
Figure 5 Contour  plot of the function U'(x,O) for isotactic polystyrene. 
Contours  are drawn at intervals of  1 kcal m o l -  i, and contours above 
10 kcal mol-1  have been omitted for clarity. Closed circles give the 
positions of the minima of U'(x, O) 

Table 3 Minima of the U'(x,O) functions 

Polymer x (A) 0 (deg) U'(x,O) (kcal mol - 1 ) 

PE 0 2.8 -0 .009  
1.27 182.8 -0 .009  

iPP 0 3.0 - 0.030 
2.14 243.0 -0 .054  
4.25 123.2 -0 .084  

sPP 0 0.2 0.007 
3.54 179.8 0 

iPS 2.30 235.8 - 0.178 
4.38 110.0 -0 .100  
6.59 348.6 -0 .081  
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COMPUTATION OF SPRING CONSTANTS 

In this section we compute the spring constants k 1 and k 2 
appearing in the equations of motion. Consider a section 
of the polymer helix, shown schematically in Figure 6a. 
We define two 'virtual' bonds extending from the end 
atoms to the helix axis and lying normal to the axis as in 
Figure 6a. The spring constants kl and k 2 will be 
determined by distorting the helical section through the 
application of forces to the virtual bonds. The virtual 
bonds are employed so that the tension or torque applied 
to the helical section is taken along or about the helical 
axis. We assume that each backbone bond has stretching 
spring constant Xb, that the virtual bonds have stretching 
spring constant x~,, that the bond angles have bending 
spring constants ~0, that the bond angles between virtual 
and real bonds have bending spring constants x~, and that 
torsion about the bonds obeys a harmonic function with 
spring constant x,. We also assume that the virtual bonds 
are very stiff, i.e. x~,, x ~ .  The origin lies at the 
intersection of the helix axis and the first virtual bond. 
The intersection of the second virtual bond and the helix 
axis lies at the vector position R. The true end of the 
helical section, the last atom, lies at vector position r, so 
that R - r  represents the last virtual bond. We let e a be the 
unit vector parallel to the helix axis, so that R = R o e 3 ,  
with R 0 representing the undistorted length. Then we 
define e~ parallel to the last virtual bond as shown and e 2 
so that the triad (ex,e2,e3) forms a mutually orthonormal 
set of basis vectors. Then we may write that 
r = xex + Roe a, for x the distance of the last atom from the 
helix axis. The total energy of this helical section is: 

U=½~K,(ql--q?) 2 (13) 
i 

Here each x i represents one of the Xb, K0, etc., spring 
constants and qi represents one of the degrees of freedom 
(bond length, bond angle, torsional angle). The sum 
extends over all degrees of freedom in the helical section. 
Also qO is the undistorted value of the particular qv We 
distort the helix by setting R = ( R o + ~ ) e 3 ,  and we 
minimize U subject to the constraint R = (Ro + 6)%. This 
yields equations of the form: 

The contribution to equation (17) due to bond b~ is 
given by the derivative OR/t~b~= v~ for v~ a unit vector 
parallel to bond i. Equation (17) then indicates that each 
bond contributes: 

(18) 

to kst 1, where vi = vilel + vi2e2 + v~ae3. The derivatives of 
R with respect to Oi or 4) i are obtained by crossing the axis 
of the rotation brought about by changes in 0i or tki into 
the component of R that is rotated by changing the 
angle 2a. For example, as shown in Figure 6b, changes in 0i 
produce a rotation about the axis: 

:e.,= I/,i x b ,+ , l - ' (b ,  ×/ ' i+ 1) (19) 

which is just the unit vector normal to both bi and bi + 1. 
The vector t~ in Figure 6b is the component of R rotated 
by 0 i, so the derivative with respect to 0~ is: 

dR/aOi = 2i x tl (20) 

Dotting this into ea and squaring indicates that each bond 
angle contributes: 

t¢ o- 1 (7il ti2 - -  7 i2 t i l  )2 (21) 

to kst 1, where ~ . i = T i l e l  + T i 2 e 2 + ] h a e 3  and 
t i = t i l e l + t i 2 e 2 + t i 3 e 3  . Note that equation (21) is 
independent of ti3. Likewise, as seen in Figure 6c, 
changes in q~i produce rotations about the axis 
vi, while the component of R rotated by tki is ui. 
Therefore, 

OR/ddpi= vl x u i (22) 

T 
e 

, e3 a V 

0 = Ki(qi-  qO) + 2.(arN/cOqi) (14) 

where 2 is the vector of Lagrange multipliers or the force 
required to maintain the displacement. Therefore 

and 

2 = kstrea (15) 

U=~k,t32 (16) 

) e 3 

where kst represents a force constant for stretching the 
entire helical section. Equating equations (16) and (13), 
inserting the expression for ( q i - q  °) obtained from 
equation (14) and rearranging yields the following 
approximation for kst: 

kZt ' = ~KT ' [e3"(SR/Sq,)] 2 (17) 
i 

giving contributions from each degree of freedom to the 
spring constant kst. 

C°~ ~ .  . u. )e3 

Figure 6 Diagram giving definitions of molecular parameters used in 
computing the chain stiffness constants k~ and k2. The virtual bonds 
discussed in the text are shown as dotted lines 
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and each torsional angle contributes an amount For  syndiotactic polypropylene: 

~c~, 1(vii ui2 - vi2uil)2 (23) k~ -1 = 2k~- 1 d_~k~- 1 (35) 

to kst 1 , where ui= uile I "1-ui2e 2 + ui3e 3. Equation (23) has 
no u~3 dependence. Note that the virtual bonds make no 
contribution to k~t 1. 

We now derive a similar equation for ktw , a spring 
constant for twisting the helical section. We displace r to 
xel + 6e2 + Roe3 while keeping R fixed at R = Roe 3. This 
requires two Lagrange multipliers: 

0 = ~ci(qz -- q°i) + 2 t'(c3r/oqi ) + 2,.2"(OR/Oqi) (24) 
and 2l are of equal magnitude and opposite direction: 

2 812 1 
k21 =~kb ~ +~kolb -1 + ~ - k ;  (36) 

In the above, l b is the bond length, equal to 1.54 A. The 
following values for kb, k o and ke, taken from the work of 
Shieh et al. 2°, were used: 

kb=4.4 X 10 -11 erg A -2 k0=0.8 x 10 -11 erg 
k ,=0.131 x 10 -11 erg 

(37) 

= 2e2 2_2 = - ~,e 2 (25) 

All the following also apply: 

U = {ktw O 2  O = 6/X ktwO = 2x (26) 

Rearranging as before yields: 

k~ 1 = x -  2~,iK[ a [e2"O(r- R)/Oql] 2 (27) 

which becomes 

kt~ 1 = ~.iK/- 1 (e 2 "t3e1/Oqi) 2 (28) 

since r -  R = xe 1 . 
The contribution to equation (28) from bonds is zero, 

since Oel/c~ql is zero when ql represents a bond length. 
The derivative 8el/00 i is just ~/x el, since 2i is the rotation 
axis for changes in 0 i and all of e 1 is rotated by changes in 
0v Likewise the derivative Oel/cOq~i is vl x e 1. Then each 
bond angle contributes an amount:  

~:o- 1723 (29) 

to kt~l, and each torsional angle an amount:  

tc~1v23 (30) 

Note that the contributions to kst 1 or kt~ 1 given in 
equations (18), (21), (23), (29) and (30) are the same for all 
equivalent degrees of freedom in any repeat unit. It 
follows that one can compute k~-1 or k21 by including 
contributions from just one repeat unit, and that kt~ 1 and 
kst i are equal to nk~ 1 and nk 21, respectively, for a helical 
sequence composed of n repeat units, as expected. 

If we assume that the helices lie on the diamond lattice, 
the following expressions hold. For  polyethylene: 

k~-t =2k~X (31) 

12 
b -1 (32) k; 1 =~k~' +~ko 

For  isotactic polypropylene and polystyrene (in the 
diamond lattice approximation both lie on the same 31 
helix): 

k? 1 =~9 kg I (33) 

k 2 1 = ~ k ~ I  . 412.-1 1612k-1 
* ~ - k 0  + ~ -  ~ (34) 

The values of kl and k 2 given in Table I are then obtained. 
Equations (17) and (28) take the form expected for the 

spring constant of an assembly of springs coupled in 
series, but with a contribution weighted by a geometrical 
factor proportional to the moment of the load borne by 
each spring. The net spring constant is influenced most 
strongly by the weakest springs in the assembly, so that, 
except in unusual cases, the torsional angles determine 
the spring constants. Polyethylene is one of these unusual 
cases. Because of the all-trans structure, elongational 
tensions are not borne by the torsional angles, but by the 
bond angles. This is obvious from equation (32), in which 
t% is absent, or from equations (22) and (17), where v i x ui 
is normal to e3 for every bond in the chain. As a result, 
polyethylene has an unusually large value of k 2. Isotactic 
polypropylene is an intermediate case. One-half of the 
bonds in isotactic polypropylene lie parallel to e3; 
therefore e3.(v i x ui) is zero for these bonds, and only one- 
half the torsional angles bear any load. The k 2 value for 
isotactic polypropylene lies between that of polyethylene 
and syndiotactic polypropylene, in which all the torsional 
angles cooperate in bearing the load. We shall see below 
that the range of k 2 values has important implications for 
the ability of the chain to transport solitons. 

In contrast with k 2, torsional angles dominate in 
determining kl in all three cases, and the kx or k'l values 
show much less variation. Angle bending contributions to 
ki- 1 would dominate only in the event that via = 0, i.e. only 
for bonds normal to the helical axis. 

RESULTS OF T H E  SOLUTION OF T H E  
EQUATIONS OF M O T I O N  

The equations of motion, equations (10), were solved by a 
Newton-Raphson iterative procedure as discussed 
above. We only considered y~--y22=l in these 
calculations, which formally represents the v=0 ,  
stationary, soliton. However, the v = 0 energy is a lower 
bound to the energy of a moving soliton, and so is 
appropriate for comparison with experimental activation 
energies. 

The initial estimate of the solution used in the Newton-  
Raphson procedure must be close to the true solution for 
the procedure to converge. To obtain a final structure we 
found it necessary to begin with a very short section of the 
chain (only 3-5 nodes). The initial structure of the short 
chain was taken as uniformly deformed with the two ends 
placed at different, symmetry-equivalent, minima of the 
U'(x,O) function. With the two ends constrained to lie in 
the respective minima, convergence could be obtained 
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with no problems. The converged structure was then used 
as the starting point of a second calculation, adding one 
or several nodes at each end and constraining only the 
two outermost nodes. This procedure was repeated until 
eventually the chain became long enough that the 
distortion could support itself without constraints. The 
final structures achieved in each case were well relaxed, 
without constraints on any of the variables, and 
sufficiently long to have the tails on each end of the stem 
lying in essentially perfect crystallographic register. 

The soliton energies reported below are given as 
relative to the perfect crystal structure. This generates 
some uncertainty in some cases, since, as noted in Table 3, 
the two minima spanned by the soliton do not have 
precisely equivalent energies, producing ambiguity in the 
value of the perfect-crystal energy to be used. The perfect- 
crystal energy used here is the simple arithmetic mean of 
the two minima, a logical choice given that the solutions 
always had solitons very near the centre of the stem. 
Nevertheless, some ambiguity, probably of the order of 
0.1 kcal mo1-1, and smaller than errors due to other 
approximations, is present in the calculated energies of 
the two polypropylenes. 

Our findings are summarized in the following 
paragraphs. 

Soliton structures and energies 
Polyethylene. The polyethylene potential (Figure 2) 

provides for a number of different solitons. The most 
stable solitons (labelled A and A' in Figure 7), combining 
a 180 ° rotation and a c/2 translation, are the same as the 
structure calculated by Mansfield and Boy@ and are 
symmetry-equivalent enantiomers. Two other solitons 
(labelled B and C in Figure 7) both involve a translation of 
c and no net rotation, although during passage of soliton 
B the individual units rotate back and forth through 
approximately 900. * The total computed energies of the 
three solitons A, B and C are 20.8, 36.7 and 
25.7 kcal mol - 1, respectively. The energy of A is in good 
agreement with the experimental activation energy 24'2s 
of 17 kcal mo l -  1, especially when one considers that our 
value should be high by about 3 kcal mol -  1 because the 
surrounding stems were not permitted to relax s. 

The estimated energy of C is somewhat higher than A 
but close enough that both A and C might contribute to 
the mechanical ~ relaxation. However, only A contributes 
to the dielectric ~ relaxation since C produces no net 
rotation of the stem. 

We attempted to obtain a soliton involving a complete 
360 ° rotation with no net translation, but solutions 
always tended to degenerate to two individual solitons: A 
followed by A' or vice versa. This is to be expected given 
the two peaks in U'(x,O) that lie directly in the path of a 
pure 360 ° rotation. Net rotations through 360 ° are best 
achieved with two solitons. 

Isotactic polypropylene. The soliton incorporating 
- 120 ° rotation and c/3 translation (shown in Figure 3) 
was computed to have an energy of 38.2 kcal mo l -  1. This 
is in reasonably good agreement with the experimental 
activation energy of the ~ relaxation, which i s  26'27 

34.5 kcal tool-  i. It is evident from Figure 3 that any other 
solitons that one might consider, e.g. a rotation through 

* The possibility of the mot ion given by path B was suggested to the 
authors  in a private conversation with Professor P. J. Barham. 
McCullough 22 also considers such motions. 

2o~. 548 I!t I / 

x 0 

I I l 0 
F i g u r e  7 

I I I I I I I I 

I I I I I I I I 
180 0 (deg) 

I I I I 

I I I I 
360 

Same as Figure 2, but with soliton structures displayed 

+ 120 ° and a translation through 2c/3, or a rotation 
through +240 ° and a translation through c/3, would 
have energies considerably higher than this and need not 
be considered. Unlike polyethylene, this stem is chiral and 
can only support solitons of a given chirality. 

Syndiotactic polypropylene. The only soliton meriting 
consideration in syndiotactic polypropylene is shown in 
Figure 4 and is calculated to have a n  energy of 
51.0 kcal mo1-1. No ~ relaxation has been observed in 
this polymer 16. Such a large energy a n d  other 
circumstances (to be discussed below) are consistent with 
the absence of the relaxation in this polymer. 

Isotactic polystyrene. The lowest energy path between 
the minima in Figure 5 passes through regions of several 
hundred kilocalories per mole. This is not apparent in 
Figure 5, since contours above 10 kcal mol - 1 have been 
omitted. Such high energies are the result of steric overlap 
between phenyl groups and are adequate to explain the 
absence of the ~ relaxation in this polymer. Because of 
this, we felt it unnecessary to calculate a soliton in this 
particular case. 

Crystal thickness dependence of activation energy; 
competition with rigid-rod motions in thin crystals 

The strain field of the A, B and C solitons in 
polyethylene extend over about a hundred CH 2 units. In 
crystals thinner than this, the leading edge of the soliton is 
able to leave the crystal before the trailing edge has 
entered, with a resulting activation energy less than the 
thick-crystal value. This explains 8 the experimentally 
observed 2, crystal thickness dependence of the activation 
energy. We have estimated the activation energy as a 
function of crystal thickness for the A, B and C solitons in 
the following way. Starting with the well converged 
structures discussed above, we held the structure in place 
in the most highly distorted regions by constraining one 
or several nodes near the centre of the stem to lie at the 
same values ofx  and 0 as in the long-stem calculation, and 
relaxed the structure with p and K - p  nodes, respectively, 
removed from the left and right ends of the stem. It was 
necessary to constrain the stem in this way since, without 
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long tails on either end of the strained port ion of the stem, 
the soliton could not support  itself and during the 
relaxation procedure would simply move off the end of 
the stem. At constant K with p varying, this calculation 
gives us the total strain energy in a stem of length 
N = M - K as the soliton moves, where M is the length of 
the original structure. By taking the maximum strain 
energy obtained at each value of K, we are able to 
estimate the activation energy as a function of crystal 
thickness. Figure 8 gives the results for the three 
polyethylene solitons. 

Figure 8 also indicates that, in thin crystals, rigid-rod 
motions become competitive with the soliton motion. If 
the polymer stem moves rigidly, an activation energy 
proport ional  to the stem length is expected, with the 
proportionality constant being equal to the value of the 
energy U'(x,O) at the saddle point through which the stem 
must pass. For  rigid motions along the same general 
paths as solitons A, B and C, the saddle points lie 
at (x,0)=(1.28,  46.9), (0, 318.6) and (1.27A, 6.5°), 
respectively, and require 0.94, 0.39 and 0.35 kcal tool-  ~, 
respectively, for each CH 2 group in the stem. The 
activation energies for rigid-rod motions are shown as 
straight lines in Figure 8. These calculations predict that 
the favoured motion in stems of fewer than about  40 or 50 
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C H  2 groups is a rigid-rod translation along the chain axis 
occurring by two separate pathways, either a pure 
translation (path C) or a rotation through about  - 9 0  °, 
followed by a translation, then by a rotation back 
through +900. * These findings are in good agreement 
with experimental observations considering stem 
transport  in paraffin crystals 2a'29. 

The translational motions B and C, rigid or not, are not 
expected to be dielectrically active. It appears then that 
the only dielectrically active motion is the A soliton, even 
in thin crystals, since the rigid-rod A motion always lies 
above the soliton in energy. 

A similar calculation was performed for the isotactic 
polypropylene soliton, with results shown in Figure 9. 
Because isotactic polypropylene has a smaller k 2 value 
than polyethylene, it has a smaller strain field, and weaker 
crystal thickness dependence. The activation energy 
required for a rigid-rod motion, more than 3 kcal mol - 1 
per backbone atom, is so high that we can rule out the 
possibility of competition with rigid-rod motions in thin 
crystals. 

Periodic barriers to soliton transport 
As mentioned above, equations (1) are the equations of 

motion of a continuum model of a crystalline stem. A free- 
streaming soliton motion can only be expected in the limit 
in which the continuum model is valid. Since the polymer 
chain is actually discrete, we can expect that the soliton 
energy varies periodically as the soliton moves from one 
repeat unit to the next. Therefore, the soliton must 
traverse a series of energy barriers as it moves along the 
chain. If these barriers are large, soliton motion will occur 
as a sequence of thermally activated processes. Instead of 
streaming through the crystal, the soliton would perform 
a one-dimensional random walk. Any relaxation, if 
observed at all, would be much slower. Two effects, either 
large values of k~ and k 2 o r  small values of U(x,O), are 
expected to favour the continuum approximation.  For 
the three polymers studied here, the k t values are roughly 
comparable,  while the k 2 value of polyethylene is much 
larger than the k 2 values of the other polymers. In 
addition, the major features of U(x,O) for polyethylene are 
about an order of magnitude smaller than those for either 
of the polypropylenes. The combined influence of these 

* See previous footnote. 
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two effects makes polyethylene the most likely candidate 
for free-streaming soliton motion of the three polymers 
examined. 

To understand better the effects of discreteness, we 
have attempted to estimate the barrier expected as the 
soliton moves down the chain. We are already solving a 
discretized form of the equations of motion (equations 
(10)) but, for this calculation to be correct, it is necessary 
for the discretization to coincide with the periodicity of 
the chain. This requires setting h = l in equation (11), and 
such a value was used in this particular calculation. A well 
converged soliton structure was obtained, as described 
above. Those nodes at which the chain had the most 
strain were selected, and the soliton was made to advance 
one repeat unit by constraining those nodes to move in 
concert and continuously from their original position to 
the position of their next neighbour. The calculated 
change in strain energy is plotted in Figure 10. As 
expected, the barrier in polyethylene is smallest, 
calculated to be of the order of 1 cal mol - 1 only, too small 
to be noticeable in Figure 10. Isotactic polypropylene 
exhibits a barrier of about 0.5kcalmo1-1 and 
syndiotactic polypropylene a barrier of about 
2 kcal mo1-1. The syndiotactic barrier is larger than kT 
and its value, combined with the value of the soliton 
energy itself (-,~ 50 kcal mol-1), explains the absence of 
the ~ relaxation in syndiotactic polypropylene. The 
barrier of 0.5kcalmo1-1 in isotactic polypropylene 
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L. Mansfield 

undoubtedly contributes to soliton scattering, but is 
probably not so large that solitons moving down the stem 
have to be thermally activated at each step. The barrier in 
polyethylene is very small, and so is not expected to 
contribute appreciably to soliton scattering in these 
systems. 

DISCUSSION AND SUMMARY 

The soliton model successfully predicts the presence or 
absence of an ~ relaxation in the four polymers studied, 
namely polyethylene, isotactic and syndiotactic 
polypropylene, and isotactic polystyrene. It successfully 
predicts the activation energy of the relaxation for the two 
polymers, polyethylene and isotactic polypropylene, that 
exhibit the relaxation. As a result of these calculations, a 
number of general rules controlling the presence of the 
relaxation can be given. These are summarized below. 

(1) The interstem potential energy function U'(x,O) 
should provide easy pathways between minima. The 
saddle points in polyethylene, isotactic polypropylene 
and syndiotactic polypropylene are all below 
4 kcal mol- 1 per backbone atom, but are much larger in 
isotactic polystyrene. Given this, there is little wonder 
that isotactic polystyrene does not have the ~ relaxation. 
In the case of the hydrocarbon polymers studied here, the 
features of the U(x,O) function are determined by the 
presence or absence of bulky side groups. Isotactic 
polystyrene, with its pendant phenyl groups, has a much 
higher saddle point than either of the polypropylenes that 
bear methyl groups, and these in turn have higher saddle 
points than polyethylene. Specific interchain interactions, 
such as dipole~ipole interactions or hydrogen bonding, 
should also contribute to higher saddle points in the 
U(x,O) function. Smaller features in the U(x,O) function 
also favour smaller periodic barriers to soliton transport 
as the soliton moves from one repeat unit to the next. 

(2) The spring constant k 2 should be large, but not too 
large. A small k2 would tend to decrease the total 
activation energy; but, if it is too small, large periodic 
barriers to soliton transport from one repeat unit to the 
next will result. Too large a k2 would give too large an 
activation energy. The point at which k 2 becomes too 
large depends on the U'(x,O) function. The geometrical 
structure of the chain appears to be the strongest factor 
affecting the value of k2. Geometrical structures in which 
the bulk of any elongational load is borne by the bond- 
bending degrees of freedom yield higher values of k 2. All- 
trans chains are the best examples of this, yielding the 
largest values of k2. Everything that we have said about 
the influence of k2 on the ~ relaxation would probably 
also apply to kl; however, kl values are not expected to 
vary so widely from one polymer to another. 

(3) The number of bonds per repeat unit should be 
small. The soliton has to incorporate enough 
accumulated strain to account for an excess or a lack of 
one repeat unit. Clearly, this is easier if the repeat unit is 
shorter. The two polypropylenes are a good example of 
this effect. The saddle points in U'(x,O) for the two 
polymers both lie at about 3 kcal mol-1 per backbone 
atom, but the activation energy of isotactic 
polypropylene, with two backbone bonds per repeat unit, 
is predicted to be considerably lower than that of 
syndiotactic polypropylene, with four backbone bonds 
per repeat unit. 
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Most  of the above  rules have been conjectured 
previously9,15. Our  calculations confirm these 
conjectures. 

On  the basis of the above  rules, we are able to explain 
the presence of  an ~ relaxation in polymers  such as 
polytetrafluoroethylene,  polyoxymethylene,  
poly(ethylene oxide) or  poly(vinyl fluoride), and the 
absence of  an ~ relaxation in polymers  such as the nylons 
or  polyesters. The former  have simple repeat units and 
many  crystallize in all-trans or  nearly all-trans structures, 
while the nylons and polyesters have long repeat units 
and are expected to have large features on the U'(x,O) 
function, since rotat ion o r  translat ion of a stem would 
require breaking of hydrogen  bonds  or  dipole~lipole 
interactions. 

These calculations also permit us to say something 
about  the expected crystal thickness dependence of  the cc 
relaxation. Two effects can be cited. One is the change in 
activation energy with crystal thickness that  is observed 
when the crystal thickness is smaller than the strain field 
of the soliton. The other  is the effect of a periodic barrier  
to soliton t ranspor t  as the soliton progresses from one 
repeat unit to the next. The latter effect is only expected to 
affect the prefactor of  the rate expression, but  in extreme 
cases it can probably  produce  a considerable slowing of 
the rate. This effect is expected to be crystal-thickness- 
dependent  since the series of  barriers will contr ibute to 
soliton scattering, and soliton back-scat ter ing would 
become more  impor tan t  as the crystal thickness increases. 

As a result of these calculations, we are also able to 
predict that  two different modes  of  rigid-rod chain 
translat ion are the preferred mot ions  in thin polyethylene 
or  paraffin crystals, a l though these mot ions  do not 
contr ibute  to the dielectric relaxation. The two modes 
are, first, a pure translat ion th rough  two C H  2 groups  and,  
secondly, a rota t ion th rough  90 ° in one direction followed 
by a translat ion th rough  two CH 2 groups  followed by a 
90 ° rotat ion in the reverse direction. The dielectric 
relaxation in all polyethylene crystals, thick or  thin, is 
dominated  by the passage of  solitons combining 180 ° 
rotat ion and translat ion th rough  one CH 2 group,  as is the 
mechanical  relaxation of  thick crystals. 
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